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We study the problem of allocating a set of indivisible goods among a set of agents in a fair and efficient

manner. An allocation is said to be fair if it is envy-free up to one good (EF1), which means that each agent

prefers its own bundle over the bundle of any other agent up to the removal of one good. In addition, an

allocation is deemed efficient if it satisfies Pareto efficiency. While each of these well-studied properties is easy

to achieve separately, achieving them together is far from obvious. Recently, Caragiannis et al. [11] established

the surprising result that when agents have additive valuations for the goods, there always exists an allocation

that simultaneously satisfies these two seemingly incompatible properties. Specifically, they showed that an

allocation that maximizes the Nash social welfare objective is both EF1 and Pareto efficient. However, the

problem of maximizing Nash social welfare is NP-hard. As a result, this approach does not provide an efficient

algorithm for finding a fair and efficient allocation.

In this paper, we bypass this barrier, and develop a pseudopolynomial time algorithm for finding allocations

that are EF1 and Pareto efficient; in particular, when the valuations are bounded, our algorithm finds such an

allocation in polynomial time. Furthermore, we establish a stronger existence result compared to Caragiannis

et al. [11]: For additive valuations, there always exists an allocation that is EF1 and fractionally Pareto efficient.

Another key contribution of our work is to show that our algorithm provides a polynomial-time 1.45-

approximation to the Nash social welfare objective. This improves upon the best known approximation ratio

for this problem (namely, the 2-approximation algorithm of Cole et al. [12]), and also matches the lower bound

on the integrality gap of the convex program of Cole et al. [12]. Unlike many of the existing approaches, our

algorithm is completely combinatorial, and relies on constructing integral Fisher markets wherein specific

equilibria are not only efficient, but also fair.

CCS Concepts: • Theory of computation → Approximation algorithms analysis;Market equilibria;

Algorithmic game theory; • Mathematics of computing → Combinatorial algorithms;

Additional Key Words and Phrases: Fair division, Nash Social Welfare, Approximation Algorithms

1 INTRODUCTION
The theory of fair division addresses the fundamental problem of allocating goods or resources

among agents in a fair and efficient manner. Such problems arise in many real-world settings

such as government auctions, divorce settlements, and border disputes. Starting with the work of

Steinhaus [30], there is now a vast literature in economics and mathematics to formally address

fair division [7, 8, 26]. Many interesting connections have also been found between fair division

and fields such as topology, measure theory, combinatorics, and algorithms [25].
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Much of the prior work in fair division, though, has focused on divisible goods, which model

resources that can be fractionally allocated (such as land). A standard fairness concept in this

setting is envy-freeness [17], which requires that each agent prefers its own allocation over that

of any other agent. A well-known result of Varian [31] shows that for the divisible setting, there

always exists an allocation that is both envy-free (i.e., fair) and Pareto efficient. Furthermore, such

an allocation can be computed in polynomial time [15, 16]. These results, however, do not extend to

the setting of indivisible goods, which model discrete resources such as courses at universities [29]

or inherited artwork. In fact, many of the classical solution concepts and algorithms that have been

developed for divisible goods are not directly applicable to the indivisible setting. For example, an

envy-free allocation fails to exist even in the simple setting of a single indivisible good and two

agents.

These considerations have motivated recent work in the theoretical computer science and

economics communities on developing relevant notions of fairness, along with existence results

and algorithms for the problem of fairly allocating indivisible goods [5, 9, 21, 23]. We contribute to

this line of work by showing that guarantees analogous to the fundamental result of Varian [31]

hold even for indivisible goods in terms of a natural and necessary relaxation of envy-freeness.

Specifically, we show that for additive valuations,
1
a fair and efficient allocation always exists, and

such an allocation can be computed in (pseudo)-polynomial time.

We consider an allocation of indivisible goods to be fair if it is envy-free up to one good (EF1).

This notion was defined by Budish [9], and provides a compelling relaxation of the envy-freeness

property.
2
An allocation is said to be EF1 if each agent prefers its own bundle over the bundle of any

other agent up to the removal of the most valuable good from the other agent’s bundle. Although

the existence of envy-free allocations is not guaranteed in the context of indivisible goods, an

EF1 allocation always exists—even under general, combinatorial valuations—and can be found in

polynomial time [23].

With this notion of fairness in hand, it is relevant to ask whether we can achieve efficiency along

with fairness while allocating indivisible goods.
3
This question was recently studied by Caragiannis

et al. [11], who showed a striking result that there is no need to trade efficiency for fairness: For

additive valuations, an allocation that maximizes the Nash social welfare [20, 27]—defined to be

the geometric mean of the agents’ valuations—is both fair (EF1) and Pareto efficient. However,

maximizing the Nash social welfare (NSW) over integral allocations is an NP-hard problem [28].

(In fact, the problem is known to be APX-hard [22]). Therefore, this existence result does not

automatically provide an efficient algorithm for finding a fair and efficient allocation of indivisible

goods. Our work bypasses this limitation by providing a pseudopolynomial time algorithm for finding

an EF1 and Pareto efficient allocation of indivisible goods under additive valuations. In particular,

when the valuations are bounded, our algorithm finds such an allocation in polynomial time. It is

worth pointing out that the problem of maximizing NSW remains APX-hard even for bounded

valuations [22].

A related problem is that of developing approximation algorithms for NSW maximization. This

problem has received considerable attention in recent years [1, 2, 4, 12, 13, 18]. The first constant-

factor (specifically, 2.89) approximation for this problem was provided by Cole and Gkatzelis [13].

This approximation factor was subsequently improved to e [2], and most recently to 2 [12]. Similar

1
Additivity means that an agent’s valuation for a set of goods is the sum of its valuations for the individual goods in that set.

2
The notion of EF1 has found practical appeal on the popular fair division website “Spliddit” [19] and in course allocation at

Wharton School of Business [10].

3
Note that fairness, by itself, does not guarantee efficiency; in fact, an EF1 allocation can be highly inefficient (refer to the

full version [3] for an example).
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approximation guarantees have also been developed for more general market models such as

piecewise-linear concave utilities [1], budget additive valuations [18], and multi-unit markets [4].

While the problem of approximating NSW is interesting in its own right, it is relevant to note that

an allocation that approximates this objective is, in and of itself, not guaranteed to be EF1 or Pareto

efficient (refer to the full version [3] for an example).
4
A second key contribution of our work is to

show that our algorithm provides a polynomial-time 1.45-approximation to the NSW maximization

problem. Thus, not only does our algorithm improve upon the best-known approximation ratio for

this problem (namely, the 2-approximation algorithm of Cole et al. [12]), it is also guaranteed to

return a fair and efficient outcome. The following list summarizes our contributions.

Our contributions

• We develop an algorithm for computing an EF1 and Pareto efficient allocation for additive

valuations. The running time of our algorithm is pseudopolynomial for general integral

valuations (Theorem 3.1) and polynomial when the valuations are bounded (Remark 1).

In addition, our algorithm can find an approximate EF1 and approximate Pareto efficient

allocation in polynomial time even without the bounded valuations assumption (Remark 2).

• We establish a stronger existence result compared to Caragiannis et al. [11]: For additive

valuations, there always exists an allocation that is EF1 and fractionally Pareto efficient (The-

orem 3.2). In other words, the problem of finding an EF1 and fractionally Pareto efficient

allocation is total. An interesting complexity-theoretic implication of this result is that there

exists a nondeterministic polynomial time algorithm for finding an EF1 and Pareto efficient

allocation (Remark 3). This implication does not directly follow from the existence result of

Caragiannis et al. [11], as the problem of verifying whether an arbitrary allocation is Pareto

efficient is known to be co-NP-complete [14].

• We show that our algorithm provides a polynomial-time 1.45-approximation for the Nash

social welfare (NSW) maximization problem (Theorem 3.3). This improves upon the best

known approximation factor for this problem (namely, the 2-approximation algorithm of

Cole et al. [12]), and also matches the lower bound of e1/e ≈ 1.44 on the integrality gap of

the convex program of Cole et al. [12]. An interesting byproduct of our analysis is a novel

connection between envy-freeness and NSW: Under identical valuations, an EF1 allocation

provides a 1.45-approximation to the maximum NSW (Lemma 3.4).

Our techniques It is known from the fundamental theorems of welfare economics that markets

tend toward efficiency. Intuitively, our results are based on establishing a complementary result that

markets can be fair as well. In particular, we construct a Fisher market along with an underlying

equilibrium which is integral (i.e., corresponding to an allocation of the indivisible goods) and EF1.

The fact that this allocation is a market equilibrium ensures, via the first welfare theorem, that it is

Pareto efficient as well.

More concretely, we start with a Pareto efficient allocation, and iteratively modify the allocation

by exchanging goods between the agents. The goal of the exchange step is to locally move toward

a fair allocation. Additionally, throughout these exchanges, we maintain a set of prices that ensure

that the current allocation corresponds to an equilibrium outcome for the existing market. We

stop when the equilibrium of the market (i.e., the allocation at hand) satisfies price envy-freeness

up to one good (refer to Section 4.1 for a formal definition). Essentially, this property ensures that

under the given market prices, the spending of an agent is at least that of any other agent up to

the removal of the highest priced good from the other agent’s bundle. Requiring the spendings to

4
We also provide an example in the full version [3] in which every rounding of the “spending restricted outcome”—a market

equilibrium notion used in the design of approximation algorithms for NSW [1, 12, 13]—violates EF1.
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be balanced in this manner implies the desired EF1 property for the corresponding fair division

instance; see Section 4 for a detailed description of this construction.

At a conceptual level, our approach differs from the existing approaches in two important ways:

First, our algorithm works with an integral Fisher market at every step, thereby breaking away from

the standard relax-and-round paradigm where a fractional market equilibrium is first computed

(typically as a solution of some convex program) followed by a rounding step [1, 2, 12, 13, 18].

Second, unlike all existing approaches, our algorithm uses the notion of price envy-freeness up to

one good as a measure of balanced spending in the Fisher market. To the best of our knowledge, this

notion is novel to this work, and might find future use in the design of fair and efficient algorithms

for other settings.

2 PRELIMINARIES
2.1 The Fair Division Model
Problem instance An instance of the fair division problem is a tuple ⟨[n], [m],V⟩, where [n] =
{1, 2, . . . ,n} denotes the set of n ∈ N agents, [m] = {1, 2, . . . ,m} denotes the set ofm ∈ N goods,

and the valuation profile V = {v1,v2, . . . ,vn} specifies the preferences of each agent i ∈ [n] over
the set of goods [m] via a valuation function vi : 2

[m] → Z+ ∪ {0}. We will assume throughout

that the valuation functions are additive, i.e., for each agent i ∈ [n] and any set of goods G ⊆ [m],
vi (G) :=

∑
j ∈G vi ({j}).

5
For simplicity, we will write vi, j instead of vi ({j}) for a singleton good

j ∈ [m]. Thus, vi, j is non-negative and integral for each agent i ∈ [n] and each good j ∈ [m]. We

will also assume, without loss of generality, that for each good j ∈ [m], there exists some agent

i ∈ [n] with a nonzero valuation for it, i.e., vi, j > 0. Finally, we let vmax B maxi, j vi, j .

Allocation An allocation x ∈ {0, 1}n×m refers to an n-partition (x1, . . . , xn) of [m], where xi ⊆
[m] is the bundle allocated to agent i . We let X denote the set of all n partitions of [m]. Given an

allocation x, the valuation of an agent i ∈ [n] for the bundle xi is vi (xi ) =
∑

j ∈xi vi, j .
Another useful notion is that of a fractional allocation. A fractional allocation x ∈ [0, 1]n×m refers

to a (possibly) fractional assignment of the goods to the agents such that no more than one unit of

each good is allocated, i.e., for all j ∈ [m], we have
∑

i ∈[n] xi, j ≤ 1. We will use the term allocation

to refer to an integral allocation, and explicitly write fractional allocation otherwise.

2.2 Fairness Notions
Envy-freeness and its variants Given an instance ⟨[n], [m],V⟩ and an allocation x, we say
that an agent i ∈ [n] envies another agent k ∈ [n] if i strictly prefers the bundle of k over its own

bundle, i.e., vi (xk ) > vi (xi ). An allocation x is said to be envy-free (EF) if each agent prefers its own

bundle over that of any other agent, i.e., for every pair of agents i,k ∈ [n], we have vi (xi ) ≥ vi (xk ).
An allocation x is said to be envy-free up to one good (EF1) if for every pair of agents i,k ∈ [n],

there exists a good j ∈ xk such that vi (xi ) ≥ vi (xk \ {j}). Given any ε > 0, an allocation x is said to

be ε-approximately envy-free up to one good (ε-EF1) if for every pair of agents i,k ∈ [n], there exists
a good j ∈ xk such that (1 + ε)vi (xi ) ≥ vi (xk \ {j}).

Nash social welfare Given an allocation x, write NSW(x) :=
(∏

i ∈[n]vi (xi )
) 1

n
to denote the

Nash social welfare of x. An allocation x∗ said to be Nash optimal if x∗ ∈ argmaxx∈X NSW(x).

2.3 Efficiency Notions
Pareto efficiency Given an instance ⟨[n], [m],V⟩ and an allocation x, we say that x is Pareto

dominated by another allocation y if vk (yk ) ≥ vk (xk ) for every agent k ∈ [n], and vi (yi ) > vi (xi )

5
We will assume that vi ({∅}) = 0 for all i ∈ [n].
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for some agent i ∈ [n]. An allocation is said to be Pareto efficient or Pareto optimal (PO) if it is

not Pareto dominated by any other allocation. Similarly, x is ε-Pareto efficient (ε-PO) if it is not
ε-Pareto dominated by any other allocation y, i.e., there does not exist an allocation y such that

vk (yk ) ≥ (1 + ε)vk (xk ) for every agent k ∈ [n] and vi (yi ) > (1 + ε)vi (xi ) for some agent i ∈ [n].
Some of our results use a generalization of Pareto efficiency, which we call fractional Pareto

efficiency. An allocation is said to be fractionally Pareto efficient (fPO) if it not Pareto dominated by

any fractional allocation. Thus, a fractionally Pareto efficient allocation is also Pareto efficient, but

the converse is not necessarily true (refer to the full version [3] for an example).

3 MAIN RESULTS
This section provides the statements of our three main results: an algorithm for finding an EF1 and

PO allocation (Theorem 3.1), an existence result for EF1 and fPO allocation (Theorem 3.2), and an

approximation algorithm for Nash social welfare (Theorem 3.3).

Algorithmic Result:

Theorem 3.1. Given any fair division instance I = ⟨[n], [m],V⟩ with additive valuations, an allo-

cation that is envy-free up to one good (EF1) and Pareto efficient (PO) can be found inO (poly(m,n,vmax))

time, where vmax = maxi, j vi, j .

Remark 1. Note that when all valuations are polynomially bounded (i.e., there exists a polynomial

f (m,n) such that for all i ∈ [n] and j ∈ [m], vi, j ≤ f (m,n)), an EF1 and PO allocation can be

computed in polynomial time. In particular, this is true when all valuations are bounded by a constant.

As mentioned earlier in Section 1, the problem of maximizingNSW remains APX-hard even for constant

valuations [22], and therefore our result circumvents the intractability associated with computing a

Nash optimal allocation in order to achieve these two properties.

Remark 2. If we relax the fairness and efficiency requirements in Theorem 3.1 to their approximate

analogues, then our algorithm is guaranteed to run in polynomial time. Specifically, our algorithm can

find an ε-EF1 and ε-PO allocation in O
(
poly(m,n, 1ε , lnvmax)

)
time, where vmax = maxi, j vi, j . (Refer

to Lemma 5.5 in Section 5.2).

The proof of Theorem 3.1 is provided in Section 5.

Existence Result:

Theorem 3.2. Given any fair division instance with additive valuations, there always exists an

allocation that is envy-free up to one good (EF1) and fractionally Pareto efficient (fPO).

Remark 3. Consider the canonical binary relation REF1+PO
associated with the problem of finding

an EF1 and PO allocation, defined as follows: For a fair division instance I and an allocation x, the
relation REF1+PO(I, x) holds if and only if x is an EF1 and PO allocation of I. It is relevant to note that

under standard complexity theoretic assumptions, REF1+PO
is not in TFNP.

6
By contrast, the binary

relation REF1+fPO(I, x), which holds if and only if x is an EF1 and fPO allocation for the instance I,

admits efficient verification.
7
Since Theorem 3.2 shows that REF1+fPO

is total, we get that the binary

relation REF1+fPO
is in TFNP. Thus, there exists a nondeterministic polynomial time algorithm for

finding an EF1 and fPO (and hence EF1 and PO) allocation.

The proof of Theorem 3.2 is deferred to the full version of the paper.

6
It is known that determining whether an arbitrary allocation is PO is co-NP-complete [14]. This fact can be used to show

that verifying whether a given allocation is EF1 and PO is also co-NP-complete. Hence, the binary relation REF1+PO cannot

be efficiently verified (i.e., it is not in FNP), unless P = NP.

7
EF1 requires checking O(n2) inequalities, and fPO can be verified by a linear program (refer to the full version).
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Approximating Nash Social Welfare:

Theorem 3.3. For additive valuations, there exists a polynomial-time 1.45-approximation algorithm

for the Nash social welfare maximization problem.

Our proof of Theorem 3.3 draws on the following interesting connection between approximate

envy-freeness and Nash social welfare:

Lemma 3.4. Given a fair division instance with identical and additive valuations, any ε-EF1 alloca-
tion provides a e(1+ε )/e -approximation to Nash social welfare.

The proof of Theorem 3.3 is provided in Section 6.

4 OUR ALGORITHM
This section presents our algorithm. We start with the relevant preliminaries in Section 4.1 that

provide the necessary definitions required for describing the algorithm. The pseudocode of the

algorithm appears in Section 4.2 along with a brief description.

4.1 Market Terminology
Fishermarket The Fisher market is a fundamental model in the economics of resource allocation

[6]. It captures the setting where a set of buyers enter the market with prespecified budgets, and

use it to buy goods that provide maximum utility per unit of money spent. Specifically, a Fisher

market consists of a set [n] = {1, 2, . . . ,n} of n buyers, a set [m] = {1, 2, . . . ,m} ofm divisible goods

(exactly one unit of each good is available), and a valuation profileV = {v1,v2, . . . ,vn}. Each buyer

i ∈ [n] has an initial endowment (or budget) ei > 0. The endowment holds no intrinsic value for a

buyer and is only used for buying the goods. We call e = (e1, . . . , en) the endowment vector, and

denote a market instance by ⟨[n], [m],V, e⟩.
A market outcome is given by the pair ⟨x, p⟩, where the allocation vector x = (x1, . . . , xn) is a

fractional allocation of them goods, and the price vector p = (p1, . . . ,pm) associates a price pj ≥ 0

with each good j ∈ [m]. The spending of buyer i under the market outcome ⟨x, p⟩ is given by

p(xi ) =
∑m

j=1 xi, jpj . The valuation derived by the buyer i under the market outcome ⟨x, p⟩ is given
by vi (xi ) =

∑m
j=1 xi, jvi, j .

Given a price vector p = (p1, . . . ,pm), define the bang per buck ratio of buyer i for good j as
αi, j B vi, j/pj , and its maximum bang per buck ratio as αi B maxj αi, j .

8
Let MBBi B {j ∈ [m] :

vi, j/pj = αi } denote the set of all goods that maximize the bang per buck ratio for buyer i at the
price vector p. We call MBBi the maximum bang per buck set (or MBB set) of buyer i at the price
vector p.

An outcome ⟨x, p⟩ is said to be a Fisher market equilibrium if it satisfies the following conditions:

• Market clearing: Each good is either priced at zero or is completely allocated. That is, for

each good j ∈ [m], either pj = 0 or

∑n
i=1 xi, j = 1.

• Budget exhaustion: Buyers spend their endowments completely, i.e., p(xi ) = ei for all i ∈ [n].
• Maximum bang per buck allocation: Each buyer’s allocation is a subset of its MBB set. That

is, for any buyer i ∈ [n] and any good j ∈ [m], xi, j > 0 =⇒ j ∈ MBBi . Stated differently,

each buyer only spends on its maximum bang per buck goods. Notice that a consequence of

spending only on MBB goods is that each buyer maximizes its utility at the given prices p
under the budget constraints.

We refer the reader to the full version for additional market preliminaries.

8
If vi, j = 0 and pj = 0, then we define αi, j = 0.
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Proposition 1 (First Welfare Theorem; [24, Chapter 16]). For a Fisher market with additive

valuations, any equilibrium outcome is fractionally Pareto efficient (fPO).

Price envy-freeness and its variants Several of our results rely on constructing market out-

comes with a property called price envy-freeness—a notion we consider to be of independent interest.

Specifically, let x be an allocation and let p be a price vector for a given Fisher market. We say

that x is price envy-free (pEF) with respect to p if for every pair of buyers i,k ∈ [n], we have

p(xi ) ≥ p(xk ).9 Similarly, x is said to be price envy-free up to one good (pEF1) with respect to p if

for every pair of buyers i,k ∈ [n], there exists a good j ∈ xk such that p(xi ) ≥ p (xk \ {j}). Finally,
given any ε > 0, we say that an allocation x is ε-approximately price envy-free up to one good

(ε-pEF1) with respect to p if for every pair of buyers i,k ∈ [n], there exists a good j ∈ xk such that

(1 + ε)p(xi ) ≥ p(xk \ {j}).

MBB graph and alternating paths The MBB graph of a Fisher market instance with a price

vector p is defined as a bipartite graph G whose vertex set consists of the set of agents [n] and the

set of goods [m], and there is an edge between an agent i ∈ [n] and a good j ∈ [m] if j ∈ MBBi
(called an MBB edge). Given an allocation x, we can augment the MBB graph by adding allocation

edges, i.e., an edge between an agent i ∈ [n] and a good j ∈ [m] such that j ∈ xi . For an augmented

MBB graph, we define an alternating path P = (i, j1, i1, j2, i2, . . . , iℓ−1, jℓ,k) from agent i to agent k
(and involving the agents i1, i2, . . . , iℓ−1 and the goods j1, j2, . . . , jℓ) as a series of alternating MBB

and allocation edges such that j1 ∈ MBBi ∩ xi1 , j2 ∈ MBBi1 ∩ xi2 ,. . . , jℓ ∈ MBBiℓ−1 ∩ xk . If such a

path exists, we say that the agent k is reachable from agent i via an alternating path. Notice that no

agent or good is allowed to repeat in an alternating path. We say that the path P is of length 2ℓ
since it consists of ℓ MBB edges and ℓ allocation edges.

Hierarchy structure LetG denote the augmented MBB graph for a Fisher market instance with

the market outcome (x, p). Fix a source agent i ∈ [n] inG . Define the level of an agent k ∈ [n] as half
the length of the shortest alternating path from i to k (if one exists). The level of the source agent

i is defined to be zero. If there is no alternating path from i to some agent k in G (i.e., if k is not

reachable from i), then the level of k is set to be n. The hierarchy structureHi of agent i is defined
as a level-wise collection of all agents that are reachable from i , i.e., Hi = {H

0

i ,H
1

i ,H
2

i , . . . , },

whereH ℓ
i denotes the set of agents that are at level ℓ with respect to the agent i . The full version

provides a polynomial time subroutine called BuildHierarchy for constructing the hierarchy.

Given a hierarchyHi , we will overload the term alternating path to refer to a series of alternating

MBB and allocation edges connecting agents at a lower level to those at a higher level. That is, a path

P = (i, j1, i1, j2, i2, . . . , iℓ−1, jℓ,k) involving agents from the hierarchyHi is said to be an alternating

path if (1) j1 ∈ MBBi ∩ xi1 , j2 ∈ MBBi1 ∩ xi2 ,. . . , jℓ ∈ MBBiℓ−1 ∩ xk , and (2) level(i) < level(i1) <
level(i2) < · · · < level(iℓ−1) < level(k). In particular, an alternating path in a hierarchy cannot have

edges between agents at the same level.

Violators and path-violators Given a Fisher market instance and a market outcome (x, p),
an agent i ∈ [n] with the smallest spending among all the agents is called the least spender, i.e.,

i ∈ argmink ∈[n] p(xk ) (ties are broken according to a prespecified ordering over the agents). An

agent k ∈ [n] is said to be a violator if for every good j ∈ xk , we have that p(xk \ {j}) > p(xi ),
where i is the least spender. Similarly, agent k ∈ [n] is said to be an ε-violator if for every good

j ∈ xk , we have that p(xk \ {j}) > (1+ ε)p(xi ). Notice that an agent can be a violator without being

an ε-violator. Also notice that if no agent is a violator (ε-violator), then the allocation x is pEF1

(ε-pEF1) with respect to p.

9
Equivalently, for every pair of buyers i, k ∈ [n], we require p(xi ) = p(xk ).
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A closely related notion is that of a path-violator. Let i denote the least spender, and letHi denote

the hierarchy of agent i . An agent k ∈ Hi is said to be a path-violator with respect to the alternating

path P = (i, j1, i1, j2, i2, . . . , iℓ−1, jℓ,k) if p(xk \ {jℓ}) > p(xi ). Observe that a path-violator (along
a path P ) need not be a violator, since there can be a good j ∈ xk not on the path P such that

p(xk \ {j}) ≤ p(xi ). Similarly, an agent k ∈ Hi is said to be an ε-path-violator with respect to the

alternating path P = (i, j1, i1, j2, i2, . . . , iℓ−1, jℓ,k) if p(xk \ {jℓ}) > (1 + ε)p(xi ).

4.2 Description of the Algorithm
Given any fair division instance I = ⟨[n], [m],V⟩ as input and a parameter ε > 0, our algorithm

(Algorithm 1), referred to as Alg from here onwards, constructs a market equilibrium (x, p) with
respect to a Fisher market instance ⟨[n], [m],V, e⟩ (for a suitable endowment vector e). The pair
(x, p) has the following two properties: (1) x is an integral allocation, and (2) x is 3ε-pEF1with respect
to p. The second property allows us to show that the allocation x is 3ε-EF1 for the corresponding fair
division instanceI (see Lemma 4.1 below). Furthermore, by the first welfare theorem (Proposition 1),

the allocation x is also guaranteed to be fractionally Pareto efficient (fPO) for the Fisher market

instance, and consequently for the fair division instance I.

Lemma 4.1. Let ε ≥ 0, and let x and p be an allocation and a price vector respectively for a market

instance ⟨[n], [m],V, e⟩ such that (1) x is ε-approximately price-envy-free up to one good (ε-pEF1),
and (2) xi ⊆ MBBi for each buyer i ∈ [n]. Then, x is ε-approximately envy-free up to one good (ε-EF1)
for the associated fair division instance ⟨[n], [m],V⟩.

Proof. Since x is ε-pEF1 with respect to the price vector p, for any pair of buyers i,k ∈ [n], there
exists a good j ∈ xk such that (1 + ε)p(xi ) ≥ p (xk \ {j}). Multiplying both sides by the maximum

bang per buck ratio αi of agent i , we get

αi · (1 + ε)p(xi ) ≥ αi · p (xk \ {j})
=⇒ (1 + ε)vi (xi ) ≥ αi · p (xk \ {j}) (since xi ⊆ MBBi )

=⇒ (1 + ε)vi (xi ) ≥ vi (xk \ {j}) ,

which is the ε-EF1 guarantee for the allocation x. �

In order to construct the desired Fisher market equilibrium, our algorithm starts with a welfare-

maximizing allocation x and a price vector p such that x is fPO and each agent gets a subset of

its MBB goods (this is Phase 1 of Alg). If the allocation x is 3ε-pEF1 with respect to p, then the

algorithm terminates with the output (x, p). Otherwise, the algorithm proceeds to the next phase.

In Phase 2, the algorithm works with the hierarchy of the least spending agent, and performs a

series of exchanges (or swaps) of goods between the agents in the hierarchy (without changing the

prices). The swaps are aimed at ensuring that at the end of Phase 2, no agent in the hierarchy is

ε-pEF1 envied by the least spender. Furthermore, all exchanges in Phase 2 happen only along the

MBB edges, thus maintaining at each stage the condition that x is an equilibrium allocation, and

hence, fPO.

If, at the end of Phase 2, the current allocation x is still not 3ε-pEF1 with respect to the price

vector p, the algorithm moves to Phase 3. This phase consists of uniformly raising the prices of the

goods owned by the members of the hierarchy. The prices are raised until either the allocation x
becomes 3ε-pEF1 with respect to the new price vector p, or a new agent gets added to the hierarchy.

In the latter case, the algorithm goes back to the start of Phase 2.

It is relevant to note that establishing the time complexity of this algorithm is an intricate task;

a priori, it is not even clear whether the algorithm terminates. The stated running time bound is
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in fact obtained via a number of involved arguments which, in particular, rely on analyzing the

spending of the agents in different phases.

5 PROOF OF THEOREM 3.1
This section presents the analysis of our algorithm and a proof of Theorem 3.1. Section 5.1 presents

the analysis of our algorithm for valuations that satisfy the power-of-(1 + ε) property. Section 5.2

extends this analysis to general valuations, culminating in the proof of Theorem 3.1.

5.1 Analysis of Alg when the Valuations are power-of-(1 + ε)
In this section, we will analyze Alg under the assumption that all valuations are power-of-(1+ε), i.e.,
there exists ε > 0 such that for each agent i ∈ [n] and each good j ∈ [m], we havevi, j ∈ {0, (1+ε)

a}

for some natural number a (possibly depending on i and j). We will start by defining the notion of

a time step that will be useful in the subsequent analysis.

Time steps and events The execution of Alg can be described in terms of the following four

events: (1) Swap operation in Phase 2, (2) Change in the identity of least spender in Phase 2, (3)

Price-rise by a factor of α in Phase 3, and (4) Termination step. We use the term time step (or simply

a step) to denote the indexing of any execution of Alg, e.g., Alg might perform a swap operation

on the first and second time steps, followed by a price-rise in the third time step, and so on. We

will use the phrase “at time step t” to denote the state of the algorithm before the event at time step

t takes place. Notice that each event stated above runs in polynomial time, and therefore it suffices

to analyze the running time of Alg in terms of the total number of events (or time steps).

We will now proceed to analyzing the correctness (Lemma 5.1) and the running time (Lemma 5.2)

of Alg for power-of-(1 + ε) valuations.

Lemma 5.1 (Correctness of Alg for power-of–(1 + ε) instance). Given any power-of-

(1 + ε) instance as input, the allocation returned by Alg is 3ε-approximately envy-free up to one good

(3ε-EF1) and fractionally Pareto efficient (fPO).

Proof. Let the output of Alg be (x, p). The fact that x is fPO follows from the observation that

at each step of the algorithm, the allocation of any agent is a subset of its MBB goods, i.e., at each

time step, we have xi ⊆ MBBi for each agent i ∈ [n]. This is certainly true at the end of Phase 1

by way of setting the prices. In Phase 2, each swap operation only happens along an alternating

MBB-allocation edge, which maintains the MBB condition. Phase 3 involves raising the prices of

the goods owned by the members of the hierarchyHi without changing the allocation. We will

argue that for each agent k ∈ [n], if xk ⊆ MBBk before the price-rise, then the same continues to

hold after the price-rise. Indeed, for any agent k < Hi , we have xk ∩ xHi = ∅. As a result, raising

the prices of the goods in xHi does not affect the bang per buck ratio of agent k for the goods

in xk (and can only reduce its bang per buck ratio for the goods in xHi ), thus maintaining the

above condition. For any agent k ∈ Hi , we have MBBk ⊆ xHi by construction of the hierarchy.

Raising the prices of the goods in xHi therefore corresponds to lowering the MBB ratios for the

agents inHi . By choice of α1, the price-rise stops as soon as a new MBB-edge appears between an

agent k ∈ Hi and a good j < xHi . This ensures that the new maximum bang per buck ratio for any

agent k ∈ Hi does not fall below its second highest bang per buck ratio prior to the price-rise, thus

guaranteeing xk ⊆ MBBk .

We can now define a Fisher market where each agent’s endowment equals its spending under x.
Since (x, p) is an equilibrium for this market, we have that x is fPO (Proposition 1).

Next, we will argue that x is 3ε-EF1. Notice that Alg terminates only if either the current outcome

(x, p) is 3ε-pEF1, or when α = α2 (Line 23). In the first case, we get that x is 3ε-EF1 for the underlying
fair division instance (Lemma 4.1). Therefore, we only need to analyze the second case.
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ALGORITHM 1: Alg

Input: An instance I = ⟨[n], [m],V⟩ such that valuations are power-of–(1 + ε).
Output: An integral allocation x and a price vector p.

// -----------------------------Phase 1: Initialization-----------------------------

1 x←Welfare-maximizing allocation (allocate each good j to the agent i ∈ argmaxk ∈[n]vk, j )

2 p← For each good j ∈ [m], set pj = vi, j if j ∈ xi .
3 if (x, p) is 3ε-pEF1 then return (x, p)

// ------------------Phase 2: Removing price-envy within hierarchy------------------

4 i ← least spender under (x, p) /* break ties lexicographically */

5 Hi ← BuildHierarchy(i, x, p)
6 ℓ ← 1

7 whileH ℓ
i is non-empty and (x, p) is not 3ε-pEF1 do

8 if h ∈ H ℓ
i is an ε-path-violator along the alternating path P = {i, j1,h1, . . . , jℓ−1,hℓ−1, j,h} then

9 xh ← xh \ {j} and xhℓ−1
← xhℓ−1

∪ {j} /* Swap operation */

10 Repeat Phase 2 starting from Line 4

11 else

12 ℓ ← ℓ + 1

13 if (x, p) is 3ε-pEF1 then
14 return (x, p)
15 else

16 Move to Phase 3 starting from Line 17

// -------------------------------Phase 3: Price-rise-------------------------------

17 α1 ← min

h∈Hi , j ∈[m]\xHi

αh
vh, j /pj

, where αh is the maximum bang per buck ratio for agent h, and xHi is the

set of goods currently owned by members of the hierarchyHi

/* α1 corresponds to raising prices until a new agent gets added to the hierarchy */

18 α2 ←
1

p(xi )
max

k ∈[n]\Hi
min

j ∈xk
p(xk \ {j})

/* α2 corresponds to raising prices until the pEF1 condition is satisfied */

19 α3 ← (1 + ε)
s
, where s is the smallest integral power of (1 + ε) such that (1 + ε)s >

p(xh )
p(xi )

; here i is the

least spender and h ∈ argmink ∈[n]\Hi p(xk ).

/* α3 corresponds to raising prices in multiples of (1 + ε) until the identity of the

least spender changes */

20 α ← min(α1,α2,α3)

21 foreach good j ∈ xHi do

22 pj ← α · pj

23 if α = α2 then
24 return (x, p)
25 else

26 Repeat Phase 2 starting from Line 4
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Let us suppose that the termination happens at time step t , and let q be the price vector maintained

by Alg just before the price-rise step that lead to termination. After the time step t , Alg terminates

with the allocation x and price vector p. Since Phase 3 does not change the ownership of the goods,

the allocation maintained by Alg just before termination is also x.
Let i be the least spender at time step t , and let Hi be the hierarchy of agent i . Since Phase 3

only affects the prices of the goods in xHi , we have that p(xk ) = q(xk ) for all k ∈ [n] \ Hi , and

p(xk ) = α2q(xk ) for all k ∈ Hi . Additionally, at the end of (any execution of) Phase 2, no agent in

the least spender’s hierarchy is an ε-path-violator (and hence is also not an ε-violator). Thus,

(1 + ε)q(xi ) ≥ max

k ∈Hi
min

j ∈xk
q(xk \ {j})

=⇒ (1 + ε)p(xi ) ≥ max

k ∈Hi
min

j ∈xk
p(xk \ {j}). (1)

By definition of α2, we have the following condition for the agents outside the hierarchy:

p(xi ) = α2q(xi ) ≥ max

k ∈[n]\Hi
min

j ∈xk
q(xk \ {j}) = max

k ∈[n]\Hi
min

j ∈xk
p(xk \ {j}). (2)

Equations (1) and (2) together imply that

(1 + ε)p(xi ) ≥ max

k ∈[n]
min

j ∈xk
p(xk \ {j}), (3)

which means that the outcome (x, p) is ε-pEF1 for agent i . If agent i is a least spender under (x, p)
(i.e., i continues to a least spender after the price rise), then x is ε-pEF1 with respect to p, and the

lemma follows. Otherwise, an agent h ∈ argmink ∈[n]\Hi q(xk ) must become the least spender after

the final price-rise step. In this case, we have that

(1 + ε)q(xh) ≥ α3q(xi ) (by definition of α3)

=⇒ (1 + ε)q(xh) ≥ α2q(xi ) (α = α2 =⇒ α2 ≤ α3)

=⇒ (1 + ε)p(xh) ≥ p(xi ) (since p(xi ) = α2q(xi ) and p(xh) = q(xh))

=⇒ (1 + ε)2p(xh) ≥ min

j ∈xk
p(xk \ {j}) for all k ∈ [n],

where the last inequality follows from Equation (3). Since 0 < ε < 1, we have that (1 + ε)2 < 1 + 3ε .
Thus, the new least spender (agent h) satisfies (1 + 3ε)p(xh) ≥ minj ∈xk p(xk \ {j}) for all k ∈ [n].
This implies that (x, p) is 3ε-pEF1. The stated claim now follows from Lemma 4.1. �

Lemma 5.2 (Running time bound for power-of–(1 + ε) instance). Given any power-of-

(1 + ε) instance as input, Alg terminates in time O
(
poly(m,n, 1ε , lnvmax)

)
, where vmax = maxi, j vi, j .

The proof of Lemma 5.2 appears in the full version of the paper.

5.2 Analysis of Alg for General Valuations: Proof of Theorem 3.1
In this section, we will show that for any given fair division instance I = ⟨[n], [m],V⟩ with integral
valuations, an allocation that is envy-free up to one good (EF1) and Pareto efficient (PO) can be

found in pseudopolynomial time (Theorem 3.1). In particular, for bounded valuations, this result

provides a polynomial time algorithm for computing an EF1 and PO allocation (Remark 1).

Wewill prove Theorem 3.1 by running Alg on a ε-rounded versionI ′ = ⟨[n], [m],V ′⟩ of the given
instance I for some parameter ε > 0. The instance I ′ is a power-of-(1 + ε) instance10 constructed
by rounding up the valuations in I to the nearest integer power of (1 + ε). From Lemma 5.1, we

know that the allocation returned by Alg is 3ε-EF1 and fPO with respect to I ′ (for any given

10
Recall that in a power-of-(1 + ε ) instance, we have vi, j ∈ {0, (1 + ε )a } for some a ∈ N (possibly depending on i and j ).
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ε > 0). We will show that for an appropriate choice of ε , the same allocation turns out to be EF1

and PO with respect to the original instance I. In addition, the running time bound in Lemma 5.2

instantiated for this choice of ε will show that Alg runs in pseudopolynomial time.

More formally, the ε-rounded version I ′ = ⟨[n], [m],V ′⟩ of the given instance I is constructed

as follows: For each agent i ∈ [n] and each good j ∈ [m], the valuation v ′i, j is given by

v ′i, j :=

{
(1 + ε) ⌈log1+ε vi, j ⌉ if vi, j > 0,

0 if vi, j = 0.

Notice that vi, j ≤ v
′
i, j ≤ (1 + ε)vi, j for each agent i and each good j.

Lemma 5.3 below establishes that for an appropriate choice of ε , an allocation that is fPO for

the ε-rounded instance I ′ is PO with respect to the original instance I. The proof of Lemma 5.3

appears in the full version of the paper.

Lemma 5.3. Let I = ⟨[n], [m],V⟩ be a fair division instance, and let ε ≤ 1

6m3v4

max

. Then, an

allocation x that is fPO for I ′ (the ε-rounded version of I) is PO for the original instance I.

Lemma 5.4 establishes that for a small enough δ , a δ -EF1 allocation is in fact EF1.

Lemma 5.4. Let I = ⟨[n], [m],V⟩ be a fair division instance, and let 0 < δ ≤ 1

2mvmax

. Then, an

allocation x is δ -EF1 for I if and only if it is EF1 for I.

Proof. If x is δ -EF1, we have that for every pair of agents i,k ∈ [n], there exists a good j ∈ xk
such that (1 + δ )vi (xi ) ≥ vi (xk \ {j}). The bound on δ implies that vi (xk \ {j}) − vi (xi ) ≤ 1

2
.

Integrality of valuations gives vi (xk \ {j}) −vi (xi ) ≤ 0, as desired. �

Theorem 3.1. Given any fair division instance I = ⟨[n], [m],V⟩ with additive valuations,

an allocation that is envy-free up to one good (EF1) and Pareto efficient (PO) can be found in

O (poly(m,n,vmax)) time, where vmax = maxi, j vi, j .

Proof. Let I ′ = ⟨[n], [m],V ′⟩ be the ε-rounded version of I with ε = 1

14m3v4

max

. From Lem-

mas 5.1 and 5.2, we know that an allocation x that is 3ε-EF1 and fPO for I ′ can be found in

O
(
poly(m,n, 1ε , lnvmax)

)
time. Under the stated choice of ε , Lemma 5.3 implies that x must be

Pareto efficient (PO) for I. Therefore, we only need to show that x is EF1 for the instance I.

Since x is 3ε-EF1 for I ′, we have that for every pair of agents i,k ∈ [n], there exists a good j ∈ xk
such that (1 + 3ε)v ′i (xi ) ≥ v

′
i (xk \ {j}). Furthermore, since I ′ is a ε-rounded version of I, we have

that v ′i, j ≤ (1 + ε)vi, j for each good j ∈ [m]. Hence, (1 + ε)(1 + 3ε)vi (xi ) ≥ v ′i (xk \ {j}). Finally,
since the valuations in I ′ are a rounded-up version of those in I, we have that vi, j ≤ v

′
i, j for each

good j ∈ [m], and thus (1 + ε)(1 + 3ε)vi (xi ) ≥ vi (xk \ {j}). For ε ≤ 1, this expression simplifies

to (1 + 7ε)vi (xi ) ≥ vi (xk \ {j}), which means that x is 7ε-EF1 for the instance I. Instantiating

Lemma 5.4 for δ = 7ε gives that x is EF1 for I. �

Lemma 5.5. Given the ε-rounded version I ′ (of the instance I) as input, Alg finds a 7ε-EF1 and
ε-PO allocation for I in O(poly(m,n, 1ε , lnvmax)) time.

Proof. Let x be the allocation returned by Alg. From Lemma 5.1, we know that x is 3ε-EF1 and
fPO for the ε-rounded instance I ′. By an argument similar to the one in the proof of Theorem 3.1,

this implies that x is 7ε-EF1 for the original instance I. The running time guarantee follows from

Lemma 5.2. Hence, we only need to show that x is ε-PO.
Suppose, for contradiction, that x is ε-Pareto dominated by an allocation y. Thus, vk (yk ) ≥
(1 + ε)vk (xk ) for every agent k ∈ [n] and vi (yi ) > (1 + ε)vi (xi ) for some agent i ∈ [n]. By
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construction of the ε-rounded instance I ′, we know that vk, j ≤ v
′
k, j ≤ (1 + ε)vk, j for each agent

k and each good j. Using the inequality v ′k, j ≤ (1 + ε)vk, j in a good-by-good manner for the

bundle xk , along with the additivity assumption of valuations in the instance I, we get that

(1 + ε)vk (xk ) ≥ v ′k (xk ). By a similar application of the inequality vk, j ≤ v
′
k, j for the bundle yk , we

get v ′k (yk ) ≥ vk (yk ). Combining these relations gives v ′k (yk ) ≥ v
′
k (xk ) for every agent k ∈ [n] and

v ′i (yi ) > v
′
i (xi ) for some agent i ∈ [n]. However, this means that the allocation y Pareto dominates

the allocation x in the instance I ′, which is a contradiction since x is fPO for I ′. �

6 NASH SOCIAL WELFARE APPROXIMATION: PROOF OF THEOREM 3.3
This section proves that Alg provides a 1.45 (≈ e1/e )-approximation for the Nash social welfare

maximization problem in polynomial time.We begin by showing (in Lemma 3.4) that if the valuations

of all the agents are identical, then any ε-EF1 allocation provides a e(1+ε )/e -approximation to Nash

social welfare. We will then use this result, along with an appropriate choice of ε , to prove the

desired approximation bound in Theorem 3.3.

Lemma 3.4. Given a fair division instance with identical and additive valuations, any ε-EF1 alloca-
tion provides a e(1+ε )/e -approximation to Nash social welfare.

The proof of Lemma 3.4 makes use a structural result stated as Lemma 6.1. A relevant notion

used in these results is that of partially-fractional allocations, defined as follows: Given a subset

B ⊂ [m] of the set of goods, a partially-fractional allocation (with respect to B) is one where the
goods in B have to be integrally allocated and the remaining goods in [m] \ B can be fractionally

allocated. Formally, a partially-fractional allocation y ∈ [0, 1]n×m is such that for each agent i ∈ [n],
we have yi, j ∈ {0, 1} for each j ∈ B, and yi, j ∈ [0, 1] for each j ∈ [m] \ B. We write FB to denote

the set of all partially-fractional allocations with respect to B.

Lemma 6.1. Let I = ⟨[n], [m],V⟩ be an instance with additive and identical valuation functions

(denoted by v for each agent) such thatm ≥ n. Let B ⊂ [m] be a subset of goods such that |B | < n.
Then, there is a partially-fractional allocation ω = (ω1, . . . ,ωn) ∈ FB that maximizes Nash social

welfare (among allocations in FB ) such that

(1) Each agent gets at most one good from B under ω. That is, for each agent i ∈ [n], we have that
|{j ∈ [m] : ωi, j > 0} ∩ B | ≤ 1.

(2) Any agent with strictly-better-than-the-worst allocation under ω gets exactly one integral good

(and no fractional good). That is, for any agent i ∈ [n] such that v(ωi ) > mink v(ωk ), we have

ωi, j = 1 for some j ∈ B, and ωi, j′ = 0 for all j ′ , j.

Proof. (of Lemma 6.1) We will consider a partially-fractional allocation ω = (ω1,ω2, . . . ,ωn) ∈

FB that maximizes the Nash social welfare over FB , and show that it can be transformed (without

decreasing NSW) into an allocation in FB that satisfies the stated properties.

Observe that if an agent i ∈ [n] receives a fractional good under ω (i.e., ωi, j′ > 0 for some

j ′ < B), then its value v(ωi ) is equal to µ B mink v(ωk ). This is because if v(ωi ) > µ, then we

can “redistribute” j ′ between agent i and the least valued agent argmink v(ωk ) to obtain another

fractional allocation in FB with Nash social welfare strictly greater than that of ω. This contradicts
the optimality of ω.
Therefore, any agent with value strictly greater than µ can only receive integral goods. We

will show that any such agent necessarily receives exactly one integral good, and hence establish

property (2). Suppose, for contradiction, that some agent i ∈ [n] receives distinct goods a,b ∈ B
(i.e., ωi,a = ωi,b = 1), and v(ωi ) > µ. Since |B | < n, there exists some agent k ∈ [n] that does not
receive any integral good from B. Since agent k only receives fractional goods under ω, it follows
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from the above argument that v(ωk ) = µ. We can now assign one of the integral goods (say a) to
agent k , and redistribute the fractional goods in ωk between the agents i and k to obtain a new

partially-fractional allocation with strictly greater Nash social welfare than ω. This contradicts the
optimality of ω. Therefore, any agent with value strictly greater than µ must receive exactly one

integral good under ω.
Next we address property (1). Note that this property already holds for agents with value strictly

greater than µ. Hence, we only need to consider agents whose value is exactly equal to µ. Let i ∈ [n]
be an agent that receives two distinct goods a,b ∈ B such that v(ωi ) = µ. Since |B | < n, there must

exist an agent k ∈ [n] that only receives fractional goods under ω. We can now perform a “swap”

by assigning one of the integral goods (say a) to agent k , and fractional goods of total value v(a)
in ωk to agent i to obtain a new partially-fractional allocation in FB with the same Nash social

welfare as ω. Such a swap is always possible, since v(a) ≤ v(ωi ) = µ = v(ωk ). By repeating this

process at most n times, we can obtain an NSW maximizer satisfying property (1). �

We will now prove Lemma 3.4.

Proof. (of Lemma 3.4) LetI = ⟨[n], [m],V⟩ denote the given instancewith identical and additive
valuations, and let v denote the valuation function of all the agents. Write x = (x1, x2, . . . , xn)
to denote an ε-EF1 allocation of I. Let ℓ denote the value of the least valued bundle in x, i.e.,
ℓ B mini ∈[n]v(xi ). By reindexing, we have that v(x1) ≥ v(x2) ≥ . . . ≥ v(xn) = ℓ.

Wewill useдi to denote a largest valued good in the bundle xi of agent i , i.e.,дi ∈ argmaxд∈xi v(д).
The fact that x is an ε-EF1 allocation implies that

v(xi \ {дi }) ≤ (1 + ε)ℓ for all i ∈ [n]. (4)

Define B B {д1,д2, . . . ,дn−1}. Let ω = (ω1, . . . ,ωn) ∈ FB be a partially-fractional allocation

(with respect to B) that maximizes Nash social welfare among all allocations in FB . Since FB
contains all the integral allocations, we have NSW(ω) ≥ NSW(x∗), where x∗ is a Nash optimal

(integral) allocation. Hence, to prove the lemma, it suffices to show that NSW(x) ≥ 1

e (1+ε )/e NSW(ω).
Define α B mink ∈[n]v(ωk )/ℓ, and let H B {k ∈ [n] : v(xk ) > αℓ}. We will now consider

partially-fractional allocations wherein only (and all) the goods in xH have to be allocated integrally,

and the remaining goods can be fractionally allocated. Write FxH to denote the set of all such

partially-fractional allocations.

The rest of the proof consists of four parts: First, we will construct an allocation x′ ∈ FxH
such that NSW(x′) ≤ NSW(x). (Doing this will allow us to work with the ratio

NSW(x′)
NSW(ω) , which is

convenient to bound from below.) Second, we will derive a lower bound on NSW(x′) in terms of

the relevant parameters α , ℓ, and n (and two other parameters h and t that we will define shortly).
Third, we will derive an upper bound on NSW(ω) in terms of the same parameters. Finally, we will

derive relationships between these parameters in order to achieve the stated approximation ratio.

• Constructing the allocation x′: We start by initializing x′← x. While there exist two agents

i,k ∈ [n] such that ℓ < v(x′i ) < v(x′k ) < αℓ, we transfer goods of value ∆ B min{v(x′i ) −
ℓ,αℓ−v(x′k )} from x′i (the lesser valued bundle) to x

′
k (the larger valued bundle). In particular,

this transfer of goods ensures that the Nash social welfare does not increase. Also, this process

must terminate because after every iteration of the while-loop, eitherv(x′i ) = ℓ orv(x
′
k ) = αℓ,

and therefore at least one of these agents does not participate in future iterations of the

while-loop. Moreover, we have x′k = xk for all k ∈ H , as the agents in H do not participate in

the transfer. This proves that x′ ∈ FxH .
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• Lower bound for NSW(x′): Notice that there can be at most one agent s in the allocation x′

such that v(x′s ) ∈ (ℓ,αℓ). This is because the while-loop continues to execute if there are two

or more such agents. For every other agent k ∈ [n] \ H , v(x′k ) is either ℓ or αℓ.
Let h B |{k ∈ [n] : v(xk ) > αℓ}| denote the cardinality of the set H (i.e., h = |H |). Let
t B |{k ∈ [n] : v(x′k ) ≥ αℓ}| denote the number of agents with a valuation at least αℓ in the

allocation x′. Thus, there are (n − t) agents with valuation strictly below αℓ in x′. We lower

bound the valuations of these agents by ℓ in order to obtain the following relation:

NSW(x′) ≥

(
h∏
i=1

v(xi ) × (αℓ)(t−h) × ℓ(n−t )
)1/n
. (5)

• Upper bound forNSW(ω): Recall thatω = (ω1, . . . ,ωn) ∈ FB is a partially-fractional allocation

(with respect to B) that maximizes Nash social welfare, and |B | < n. Using Lemma 6.1, we can

assume, without loss of generality, that ω has the following two properties: (1) each agent

i ∈ [n − 1] gets the good дi under ω (this can be ensured via reindexing since the valuations

are identical), and (2) if v(ωi ) > mink ∈[n]v(ωk ) for any i ∈ [n], then agent i gets exactly one

integral good under ω (and no fractional good).

We will now argue that v(ωk ) ≤ v(xk ) for all k ∈ H . Suppose, for contradiction, that there

exists an agent k ∈ H such that v(ωk ) > v(xk ). By definition of H , v(xk ) > αℓ for all k ∈ H ,

and thereforev(ωk ) > αℓ. We also know that mink ∈[n]v(ωk ) = αℓ, and therefore, by property
(2), agent k must get exactly one integral good дk under ω (and no fractional good). However,

since дk ⊆ xk , this contradicts the condition v(ωk ) > v(xk ).
By a similar reasoning, we can show thatv(ωk ) = αℓ for allk ∈ [n]\H . Indeed, ifv(ωk ) > αℓ =
mina v(ωa) for some k ∈ [n] \ H , then by property (2), agent k must get exactly one integral

good дk underω (and no fractional good). This would imply thatv(xk ) ≥ v(дk ) = v(ωk ) > αℓ,
which contradicts the fact that k ∈ [n] \ H .

These observations imply the following upper bound on the Nash social welfare of ω:

NSW(ω) ≤

(
h∏
i=1

v(xi ) × (αℓ)(n−h)
)1/n
. (6)

• Deriving relationship between the parameters: From Equation (4) and from the fact that x′k = xk
for all k ∈ H , we have v(x′k \ {дk }) = v(xk \ {дk }) ≤ (1 + ε)ℓ for all k ∈ H . Hence, we can

upper bound the value of all goods in [m] excluding the h goods in the set

⋃
k ∈H {дk }, as

follows:∑
i ∈H

v(x′i \ {дi }) +
∑

i ∈[n]\H

v(x′i ) ≤ (1 + ε)hℓ + αℓ(t − h + 1) + ℓ(n − t − 1). (7)

Next, we will derive a lower bound for this total value by considering ω. Note that all the
goods in the set

⋃
k ∈H {дk } are integrally allocated under ω. Hence, at least (n − h) agents do

not receive any good from the set

⋃
k ∈H {дk }. The cumulative value derived by these agents

under ω is at least αℓ(n − h), since mink v(ωk ) = αℓ. Using Equation (7) and the fact that

h ≤ t , we get

αℓ(n − h) ≤ (1 + ε)tℓ + αℓ(t − h + 1) + ℓ(n − t − 1).

Simplification gives that t ≥ (α−1)(n−1)α+ε , which can be further simplified to obtain

(n − t) ≤
n(1 + ε) + α − 1

α + ε
≤

n(1 + ε)

α
+
α − 1

α
≤

n(1 + ε)

α
+ 1.
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Recall that NSW(x) ≥ NSW(x′). Using the above relation with Equations (5) and (6) gives

NSW(x)
NSW(ω)

≥
NSW(x′)
NSW(ω)

≥

(∏h
i=1v(xi ) × (αℓ)

(t−h) × ℓn−t
)
1/n

(∏h
i=1v(xi ) × (αℓ)

(n−h)
)
1/n

= α−
n−t
n ≥ α−

1+ε
α −

1

n . (8)

The −1/n term in the exponent of α can be neglected via a scaling argument, as follows: Construct

(for analysis only) a scaled-up instance I ′ consisting of c ≥ 1 copies of the instance I. For any

allocation y that is ε-EF1 for I, the allocation y′ = (y, y, . . . , y) is ε-EF1 for I ′. Write n′,α ′, ℓ′,ω ′

to denote the analogues of n,α , ℓ,ω in I ′. Also, let ω̃ denote the fractional allocation (ω,ω, . . . ,ω)
in I ′. It is easy to see that n′ = cn, α ′ = α , and ℓ′ = ℓ. Moreover,

NSW(y)
NSW(ω)

=
NSW(y′)
NSW(ω̃)

≥
NSW(y′)
NSW(ω ′)

≥ α−
1+ε
α −

1

cn ,

where the first term is for the instance I, and the remaining terms are for the instance I ′. In

addition, the relation NSW(ω ′) ≥ NSW(ω̃) follows from the optimality of ω ′ for I ′. By choosing a

sufficiently large value of c , the term −1/cn in the exponent can be made arbitrarily small. Therefore,

the lower bound in Equation (8) is (arbitrarily close to) α−
1+ε
α . Finally, notice that the function z−

1+ε
z

with z ≥ 0 is minimized at z = e . This gives a lower bound of e−(1+ε )/e , as desired. �

We will now proceed to the proof of Theorem 3.3. The proof relies on transforming a general

fair division instance into one with identical valuations, and showing that the Nash social welfare

of the allocation returned by Alg is preserved in this transformation.

Theorem 3.3. For additive valuations, there exists a polynomial-time 1.45-approximation algorithm

for the Nash social welfare maximization problem.

Proof. For a given instance I = ⟨[n], [m],V⟩, let z and q denote the allocation and the price

vector respectively that are returned by Alg when provided as input the ε-rounded version of I (the

parameter ε is set to a small constant). Let αi , 0 denote the maximum bang per buck ratio of agent

i with respect to q. Construct a scaled instance Isc = ⟨[n], [m],Vsc⟩ such that vsc

i, j =
1

αi
vi, j for all

i and j.11 Then, for any allocation y, NSW(y) in Isc is 1

(
∏n
i=1 αi )

1/n times NSW(y) in the original

instance I. Therefore, in order to obtain the desired approximation guarantee, it suffices to show

that z achieves an approximation factor of 1.45 in the scaled instance Isc.

Let ω denote a Nash optimal (integral) allocation in the original instance I. By the above

argument, ω is Nash optimal in the scaled instance Isc as well. Additionally, for each agent i in
Isc, we have that vsc

i, j = qj for all j ∈ MBBi , and v
sc

i, j < qj for all j < MBBi . Therefore, for any agent

i , we have vsc(zi ) = q(zi ) (since, from Lemma 5.1, we have that zi ⊆ MBBi ), and v
sc

i (ωi ) ≤ q(ωi ).

Consequently, the Nash social welfare of the computed allocation z and the optimal allocation ω
satisfy the following relations in the scaled instance Isc:(

n∏
i=1

vsc

i (zi )

)
1/n

=

(
n∏
i=1

q(zi )

)
1/n

(9)

and (
n∏
i=1

vsc

i (ωi )

)
1/n

≤

(
n∏
i=1

q(ωi )

)
1/n

. (10)

11
A similar scaling was used by Cole and Gkatzelis [13] in their analysis of NSW approximation.
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We will further transform the valuations in Isc to obtain an instance Iid = ⟨[n], [m],V id⟩ with

identical valuations. Specifically, we set v id

i, j = qj for all i and j. We know from Lemma 5.1 that z is
3ε-pEF1 with respect to q in the original instance I, and that zi ⊆ MBBi for each agent i ∈ [n]. It
then follows that z is 3ε-EF1 in the identical valuations instance Iid. Furthermore, when ε = 1

300
,

the allocation z is 1

100
–EF1 in Iid, and therefore from Lemma 3.4, we have that(

n∏
i=1

q(zi )

)
1/n

≥ e−(1+0.01)/e max

y∈X

(
n∏
i=1

q(yi )

)
1/n

≥
1

1.45
max

y∈X

(
n∏
i=1

q(yi )

)
1/n

≥
1

1.45

(
n∏
i=1

q(ωi )

)
1/n

≥
1

1.45

(
n∏
i=1

vsc

i (ωi )

)
1/n

(using Equation (10)).

The previous inequality and Equation (9) together give us an approximation factor of 1.45 under
the valuation profileVsc

: (
n∏
i=1

vsc

i (zi )

)
1/n

≥
1

1.45

(
n∏
i=1

vsc

i (ωi )

)
1/n

,

which provides a similar approximation guarantee for the original instance I. Finally, observe that

the allocation z can be computed in polynomial time for the above choice of ε (Lemma 5.5). This

completes the proof of Theorem 3.3. �

7 CONCLUDING REMARKS
We studied the problem of finding a fair and efficient allocation of indivisible goods. Our work

provided a framework based on integral Fisher markets and an (approximate) price envy-freeness

condition resulting in a pseudopolynomial algorithm for finding an EF1 and PO allocation, and a

polynomial time 1.45-approximation algorithm for Nash social welfare. Determining whether there

exists a (strongly) polynomial time algorithm for the problem of finding an EF1 and PO allocation

remains an interesting direction for future work. Extensions of our results to more general classes

of valuations (e.g., submodular) will also be interesting.
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